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A "corner transfer matrix" (CTM) is defined for the zero-field, eight-vertex 
model on the square lattice. Its logarithm and its diagonal form are 
obtained to second order in a perturbation expansion of low-temperature 
type. They turn out to have a very simple form, apart from certain "re- 
mainder" contributions that can be ignored in the limit of a large lattice. 
It is conjectured that in this limit the operators have these simple forms for 
all temperatures less than the critical temperature T~.. The spontaneous 
magnetization can then easily be obtained, and agrees with the expression 
previously proposed. It is intended to prove some of the conjectures in 
subsequent papers. 
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matrices ; spontaneous magnetization. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

At present  there are two models in lattice statistics for which the free energy 
has been obtained exactly, but  the spontaneous  magnet izat ions or polariza- 
t ions have only been obtained as a conjecture (albeit a rather plausible one). 
The models are the eight-vertex model on the square lattice <1,2) and the pure 
three-spin interact ion model on the t r iangular  lattice. (3,4) 

It  is possible that  there is a more general model that is exactly solvable 
and includes both  these (together with the normal  lsing model on  the 
t r iangular  lattice). However, one has not  yet been found,  so for the momen t  
we must  consider the eight-vertex and three-spin models separately. 

One way of a t tempting to calculate the magnet izat ion and polar izat ion 
of the eight-vertex model would be to take the known  form (~ of the eigen- 
vectors of the row-to-row transfer matrix and use methods similar to those 
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previously employed for the six-vertex model. (6) However, even if this rather 
ambitious program could be carried through, it would not be very 
illuminating. 

The purpose of the present and subsequent papers is to explore another 
approach, which promises to give some insight into the structure of the 
operators that build up the partition function, and perhaps provide a com- 
pletely new way of obtaining the thermodynamic properties of the system. 
For the moment we shall consider only the eight-vertex model, but similar 
techniques should be applicable to the three-spin model. 

In Sections 2-4 we define two "corner  transfer matrices" A and B for 
the square lattice. (For an isotropic lattice they are the same.) In Section 5 
we obtain second-order perturbation expansions of low-temperature type 
for In A and for the diagonal form Aa of A. Apart from certain " remainder"  
or " b o u n d a r y "  contributions that can be ignored in the thermodynamic 
limit, they have very simple forms: Aa is a direct product of diagonal two by 
two matrices [Eq. (50)] and In A is an anisotropic Heisenberg chain operator, 
but with coefficients proportional to the site number j  [Eq. (58)]. The same is 
true for B, and A and B commute. 

In Section 6 we introduce the usual elliptic function parameters q, x, and 
z that occur in the calculation of the free energy of the eight-vertex model. (1~ 
Then in Section 7 we conjecture that Eqs. (50) and (58) are in fact exact for 
all temperatures less than To, and specify the coefficients •, w, w', J l ,  J2 ,  J a ,  
and J4  occurring in the equations. The spontaneous magnetization is then 
readily obtained [Eq. (57)] and agrees with the previous conjecture of Barber 
and Baxter. C2) 

Finally, in Section 8 we discuss the significance of these conjectures, and 
remark that some partial results have been obtained to support them. It is 
intended to give these in subsequent papers. 

Nota t ion  

The symbols a, b, e, and d are used throughout this paper for the Bohz- 
mann weights of the eight-vertex model; they are scalars and are never given a 
suffix. The symbols sj, cj, and dj are used for the two by two Pauli spin 
matrices [Eq. (16)]; they always have a suffix. 

2. C O R N E R  T R A N S F E R  M A T R I C E S  

Consider the spin formulation of the eight-vertex model. (7,8) Label the 
columns of  the square lattice by i, the rows by j. Let a~.j = +_ 1 be the spin 
associated with the site on column i and row j. Assign diagonal pair inter- 
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Fig. I. The  d iagonal  in terac t ions  be tween  spins  on  the  
lattice. There  is also a fou r - sp in  in teract ion.  
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actions -J, - J '  as in Fig. 1, together with a four-spin interaction --/4. 
Then the Hamiltonian is 

H = - ~  ~ (J~,;+1~,+1,, + J % ~ + 1 , , + 1  + -/,~,,,~,+~,,~,,,+~+~,,+1) (a) 
i 1 

and the partition function is 

Z = ~ exp(- /3H)  (2) 

where the summation is over all allowed values of the spins, and/3 = 1/keT. 
We take J and J '  to be positive. 

Consider the lattice of sites (i,j) such that [i I + ]j[ ~< n + 2, excluding 
(0, + (n + 2)) and (+ (n + 2), 0). This lattice has diagonal boundaries, as 
shown in Fig. 2. Impose the boundary condition 

or,, = + 1  i f  ]i I + IJl -- n + ] o r n  + 2 (3) 

Divide the lattice by two cuts into four quadrants of equal size, as shown 
in Fig. 2. Perform the summation in (2) over all spins, except for those on the 
cuts .  

Let rz denote the n spins on the right half (including the center) of  the 
horizontal cut. Similarly, let r2, ra, and % denote the spins on the half-cuts 

Fig. 2. The  lattice with d iagona l  boundar ie s ,  
for  the  case n = 5. Spins on  sites s h o w n  by 
filled circles are free; those  s h o w n  by a p lus  
sign are  fixed to be up ,  i.e., to have  va lue  + 1. 
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(including the center) indicated in Fig. 2. I f  r l  ..... ~-~ are held fixed, then 
clearly the summat ion  in (2) factors  into four  parts ,  and (2) becomes 

TI ~g ~8 $'1 

where A(.r~, r2) is the contr ibut ion to Z f rom the upper  right quar ter  of  the 
lattice, B is the contr ibut ion f rom the upper  left, etc. 

We can write A explicitly. Draw the upper  right quar ter  o f  the lattice 
as in Fig. 3. Label  the spins on the edges as shown (the bo t t om and r ight-hand 
ones are fixed to be + 1 f rom the bounda ry  condi t ion on Z) .  Then T~ denotes 
the n spins c h ..... a~, and ~ the n spins a l ' ,  .... a~'. Not ing  that  ~rl' = ~1 (both 
being the center spin), it follows tha t  

A(rl[~2) = A(crl ..... ~lcrl ' , . . . ,  cry') = 3~1.o i ~ exp(- /~H~r)  (5) 

where H~r is the interaction Hami l ton ian  for  the spins shown in Fig. 3 
(including the boundaries) ,  and the summat ion  is over all spins associated 
with internal sites (denoted by filled circles in Fig. 3). 

Clearly A(r~lr= ) can be regarded as the element (~-1, z2) of  a 2" by 2" 
matr ix  A. Similarly for  B, C, and D. Then Eq. (4) can be written 

Z = T r ( A B C D )  (6) 

These matrices can be thought  of  as describing the effect o f  adding a 
quarter ,  or corner,  of  the lattice. We call them corner transfer matrices. F r o m  
(1) and (5) it is fairly easy to see that  

A' = C =  C '  = A, B'  = D = D '  = B (7) 

+ + 

I 

~n o + + 

o �9 q- + 

o �9 �9 + + 

i ~ o  �9 �9 �9 + + 

o o o o o + 
i 

Fig. 3. The upper right corner of the lattice, corresponding to the CTM A. The summa- 
tion in Eq. (5) is over those spins on sites shown by filled circles. 
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where A'  is the transpose o f  A, etc. Also, B can be obtained f rom A by inter- 
changing J and J ' .  Equat ions (6) can now be written 

Z - -  Tr(AB) 2 (8a) 

the free energy per site f is given by 

- f i f  = lim [2n(n + 1)] -1 I n Z  (8b) 

and the "par t i t ion  funct ion per site" • by 

K = e -Bf = lim Z 1;2~(~+1) (8c) 

The spontaneous magnetizat ion M can also be written in terms of  A 
and B. As in (5), take ~r~ to be the center spin o f  the lattice. Then 

M = (~1) = Tr[S(AB)2]/Tr(AB) 2 (9) 

where S is a diagonal matrix with elements 

S(al  ..... a,[crl', .... a , ' )  = (r~ 3o1,~ i 3o2,o i ... 3~,.o;, (10) 

F rom (5), the matrix S commutes  with bo th  A and B. 

3. H A L F - R O W  M A T R I C E S  

The corner transfer matrix (CTM) A is a product  of  matrices which 
successively build up the quadrant  shown in Fig. 3 one row at a time. Con-  
sider the rows j and j + 1 o f  spins shown in that  figure, and label them as 
in Fig. 4. Then the contr ibution to the part i t ion function o f  the interactions 
between these spins is 

Gj(ch,... , ~nlcrl', .... (r~') = 3~1,~ i ... 8o,,o~ exp (Ja~+l#~+l 

. . . .  )1 
+ o r ekee+2 + J4akcrk+l~+lae+2 (11) 

t / / 

~ % 2  o,., 
o o o + + 

o o o o + + 
a:j = aj oj. 1 % 

Fig. 4. The half-rows j and j + I of Fig. 3, corresponding to the half-row matrix Gj. 
The right-hand side of Eq. (11) is the Boltzmann weight of the interactions between the 
spins on these two rows. 
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! / v ! where ~+1 = ~+1 = cry+2 = +1. The Gs(~ 1 ..... ~1ol .... ,o~)  can be re- 
garded as elements of a 2" by 2 ~ matrix Gj, and from Figs. 3 and 4 it can be 
seen that 

A = G1G2G3 ... G ,  (12) 

Further, each G s is a product of matrices that correspond to adding a 
square to the half-row shown in Fig. 4. From (11), 

Gj = V ~ V , _ I V , _ 2  ... Vs (13) 

where, for j = 1,..., n, 

x exp[~(Jcrj+lcr~.+l + J'~P~'+2 

+ J4,rp;+ 1~;.+ ~;+ 2)] (14) 

taking 

' ' ( 1 5 )  O'n+ 1 = = = = "1-1  f f n + l  O ' n + 2  O'rz + 2 

The V~ can be written more neatly in operator form. Let sj, cj, and d s 
be the Pauli operators 

S t =  (10 __?), Cy= (~ 10), d , =  (0 ; i )  (16) 

acting on thej th  spin. Also, let a, b, c, and d be the weights of the eight-vertex 
model, defined by <1'7> 

a = exp[/3(J + J '  + J4)], b = exp[/3(-J - J '  + J~)] 
(17) 

c = exp[fl(-d + J '  - J4)], d --- exp[fi(J - J '  - J4)] 

Then 

Vj = �89 + d + (a - d)sss~+2 + (b + c)cs+l + (c - b)sscj+lsj+2 ], 

j =  1 ..... n -  1 (18a) 

V~ = {[a + d +  (a - d)s~] 

(taking s~+l = + 1). Further, from (10) and (16), 

S = sl (19a) 

We can now regard the CTM A as defined by (12), (13), (17), and (18a), 
and B as defined by a similar set of equations with J and J '  (and hence c and 
d) interchanged. Noting from (18a) that each Vj is symmetric, and 

V i V a =  VkV~ if [ j -  k[ /> 2 (20) 
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it is not difficult to verify from (12) and (13) that A and B are also symmetric 
operators. 

Hereafter we shall regard a, b, e, and d as independent parameters, 
which is equivalent to introducing an arbitrary normalization factor (the 
same for A and B) into (17). 

4. ALTERNATIVE REPRESENTATIONS 

Since we have until now worked with the spin version of the eight-vertex 
model, we shall call the above representation (18a) and (19a) of the Vj and S 
the spin representation. There are two other representations that we shall use .  
They correspond to merely rearranging the rows and columns of the matrices. 

4.1. A r r o w  R e p r e s e n t a t i o n  

Replace the indices G1 ..... ~,, o1',..., ~ '  in (10) and (14) by tL1 .... , t~,  
Ix1',..., p-n', where 

t / / txJ --- aJ~J+z, /xJ = %'~s+1, j = 1,...,n - 1 
(21) 

/~n ~ (rn~ ~ n '  = o'n '  

Thus ~j = + 1 if the corresponding adjacent spins are equal, - 1 if they are 
different. The tzj therefore describe the arrow states of the arrow formulation 
of the eight-vertex model, a'7) 

Now associate the Pauli operators (16) with t~j, ~/ .  Then from (14) and 
(10), 

Vj = �89 + d + (a - d)sjs:+l + (b + e)ejej+l + (b - e)djdj+l], 

j =  1 ..... n -  1 (18b) 

V,  = �89 + d + (a - d)s,~] 

S = sls2s3 ... s~ (19b) 

This representation has the merit of making the commutation relations 
(20) obvious. Also, since there are similarity transformations that permute 
(s;, cj, dj) for all j ,  it clarifies the various symmetries of the eight-vertex 
model(8): They correspond to interchanging the coefficients in the first of 
Eqs. (18b). 

4.2. Third Representation 

Replace ~1,..., en, ~1',..., ~n' by vz,..., vn, vz',..., v,', where 

vj = %~j+2, v/ = o/o~.+2, j =  1 .... , n -  2 

r t i 

(22) 

(23) 
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Writing (14) and (10) in terms of the vj, v/, then converting to operator 
notation, we obtain 

1/1 = ~[a + d + (a - d)s l  + (b + c)c2 + (c - b)sle2] 

Vj = �89 + d + (a - d)sj  + (b + e )e j_ lc j+l  + (c - b)cj_zsjcj+l],  

j = 2 , . . . , n -  1 (18c) 

V,  = �89 + d +  ( a -  d)s,] 

S = slsas5 "" s,, (19c) 

where n' = n - 1 or n according to whether n is even or odd, respectively. 
This representation is useful when developing expansions in powers of 

b and c, since to leading order each Vj is a diagonal operator acting only on 
the j th  "v-spin." 

We could draw up a table giving the various individual operators (e.g., 
cj) in the three representations, but all the required information can be 
deduced by comparing (18a), (18b), and (18c). 

5. " ' L O W - T E M P E R A T U R E "  E X P A N S I O N  

At low temperatures the dominant vertex weight in (17) is a, the others 
being much smaller. It is therefore appropriate to expand (18), (13), and (12) 
in powers of b, c, and d. However, from (18), Vj is diagonal when b and c are 
zero, so it is possible to expand in powers of b and c only, the coefficients 
being functions of a and d. 

We shall be interested in obtaining the eigenvalues of A. It turns out that 
a useful first step is to evaluate the operator In A. 

Use the third representation. Define 

a = l n a ,  3 = l n d  (24) 

and let hj and uj be the diagonal operators 

h i =  ( ;  03), u j =  ( 7  b/Od) (25) 

acting on the j th  "v-spin." Let 

q = ulc~; ej = c~-lujcj+l ,  j = 2 , . . . ,n  - 1; E~ = 0 (26) 

Then (18c) can be written 

V j =  e~,(1 +Ej), j =  1 .... , n  (27) 

Substitute this into (13) and (12), expand to second order in the e~, and 
take the logarithm to this order. Define 

0 = (a - 8)/sinh(a - 3), r = {sinh[2(c~ - 3)] - 2a + 23}/4 sinh2(a - 8) 
(28) 
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After a fair amount of work one obtains 
n-I n-i 

In A = j h j  + 0 ~ je ,  + �89 ~ e 2 [ _ j  _ ( j _  1 ) j r s j_ l  + j ( j  + 1)~-sj+l] 
j=l j=l j=l 

+ 0 ( ,  3) (29) 

A large number of unexpected simplifications occur in obtaining (29): 
The coefficients threaten to be quite complicated functions of j ,  but after 
many cancellations become only simple linear and quadratic forms; one 
expects terms containing ~Ej.+ ~ and EjEj+ 2, but these cancel out. 

Now we look for an orthogonal operator P that transforms In A and A 
to diagonal form, i.e., 

P r A P  = Aa,  p T p  = 1 (30) 

where Aa is diagonal. 
Note that to leading order in the (b, c) expansion, 

n 

In A = ~ jhj (31) 
. /=1  

Many of the eigenvalues of this operator are degenerate, so one might expect 
a higher order calculation to resolve this degeneracy, and that even to leading 
order we could not make the obvious choice P = 1. However, to second order 
this turns out not to be the case, and degenerate eigenvalues remain 
degenerate. 

Define two sets of real antisymmetric operators pj and qj by 

Pl  = - � 8 9  2 - d2) - luld2 

ql = 0 
(32) 

pj  = - �89 2 - d 2)- lc s_ tujdy+ 1 

qj = - �89 2 - d 2) - ldj_ lujcj+ 1 

where j  = 2 ..... n - 1. Writing (x, y) = x y  - y x  for the commutator of two 
operators, to second order we find that 

r r - -1  

ln P = ~ [(j + 1 ) p j -  ( j -  1)qj] 
j = l  

n - 1  

- ~ [(j + 2)(pj,pj+l) + (2 j+  1)(pj,qs+l ) + ( j -  1)(qj,qj+~)] 
Y = l  

r ~ - 8  

- �89 ~ [(j + 3)(pj, Pj+2) + ( j  - 1)(qj, qj+2)] + O(e 3) (33) 
j = l  

n n--1 

lnAg = ~ j h  i + �89 ~ ~ 2 [ _ j  _ ( j  _ 1)j~'sj_~ + j ( j  + 1)T'Ss+~ ] 
j=l j=l 

+ O(, a) (34) 
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r '  = �89 2 + d2)/(a 2 - d 2) (35) 

The expressions (29) and (34) can be further simplified. Define mj to be 
the operator 

m,-- (: 
acting on spinj.  Then from (16), (25), and (26), 

(36) 

sj = 1 - 2mj 

c 2 (b  2 c2) 
ej z = uj 2 = ~  + ~ - ~ - ~  mj 

(37) 

(38) 

Substituting these expressions into the last summations in (29) and (34), we 
find that many of the terms in the summation cancel, leaving 

lnA = - C n +  jgj + 0 ~ , . # j -  R,~ + 0(~ 3) 
j = l  J = l  

(39) 

where 

l n A a =  - C ' n  + ~ j g / -  R~' + O(e a) 
1 = 1  

C = (z - �89 2 

g~ = h 3 + (r  - �89 2 + 2c2rm/a  2 

C 2 
Rn = -~ r[(n - 1)nm._l  + n(n + l)mn] 

(40) 

(41) 

(42) 

C 2 
(43) 

and C', g / ,  and R (  are defined similarly, but with r replaced by ~'. The gj, 
g / ,  R , ,  and R~' are diagonal operators; gj and g / a c t  only on spinj.  

Note that R, and R,~' are " remainder"  terms arising from the last 
term(s) in the summations over j. 

In this calculation we have retained all terms of order b, c, b 2, bc, and c 2 
and neglected cubic and higher terms. We have made no assumption regard- 
ing the relative magnitudes of a and d. 

Suppose now that J and J '  are both large and positive but J - J '  and J~ 
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are of order unity or less. Then from (17) there exists a small parameter t such 
that 

e/a ~ t, d/a ~ t, b/a ~ t 2 (44) 

In this case, each operator V s is singular (i.e., has zero determinant) to 
leading order. The expansion of in A is therefore not trivial. Nevertheless, 
note that, from (25) and (26), uj and Ej are of order t. It seems that the other 
coefficients (e.g., 0 and ~-) in the (b, e) expansion are of order unity or less. 
Also, by performing direct calculations for small values of n, it appears that 
there exists a perturbation expansion of In P in increasing powers of t 2 and 
expansions of  In A and In Aa of the form 

jh i + (3 - cO(t2L1 + t4L2 + ...)+ t2M~ + t4M2 + ... (45) 
t = 1  

It follows that (33), (39), and (40) provide expansions valid to order t 2. 
Define 

u / =  a - l d u j =  a-2(oCd abO) ~ t 2  (46) 

and take Co = 1 ; then the expansions are 

l n P  = - �89  ~ [(j + 1)cj_lu/dj+~ - ( j  - 1)dj_~u/cj+l] + O(P) (47) 
] = 1  

In Aa = ~ j(hi + c2rnj/a 2) - R~ + O(P) (48) 
] = 1  

r ~ - i  

In A = In Aa + 2(c~ - 3) ~ cj_lu/cj+l + O(t 4) (49) 
i = 1  

where R, is still defined by (43), but with ~- given its leading-order value of �89 

5.1. Free Energy and Magnet i za t ion  

The free energy and magnetization are given by (8) and (9). To use these 
expressions we must consider the other CTM B, which is obtained from A by 
interchanging e and d. From (44), if t is small for A, then it is also small for B, 
so we can consider an expansion of A, B,f ,  and M in increasing powers of t. 

Further, from (46) and (47), to order t 2 the orthogonal matrix P that 
diagonalizes A is unaltered by interchanging c and d. Thus, at least to this 
order, A, B, and S can be simultaneously diagonalized, and in (8) and (9) we 
can replace A and B by their diagonal representations An and Bd. The 
products and traces are then trivial to evaluate. 
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From (48), (36), (25), and (24), to relative order t 2, 

Ba=P,~'K'~(n+I~'2[exp(-R,~')][(~ Ow,)| wOz) 

where 0~, P~', and ~ are scalar factors given to this order by 

p~ = p.' = 1, ~c = a (51) 

R.  is a diagonal operator given by (43) with ~- = �89 R~' is now R. with e and 
d interchanged, and 

w = a-ld[1 + c2/a 2 + O(t~)], 

In particular, for t small, 

O < w < l ,  

lira n-2 In p~ = 

w' = a-lc[1 + d2/a 2 + O(t~)] (52) 

0 < w' < 1 (53) 

lira n-2 In p~' = 0 (54) 
g--* ct) 

Now R. and R~' are diagonal operators acting on spins n - 1 and n 
only. Their elements are positive and (for large n) proportional to n 2, except 
when spins n - 1 and n are both up (equal to + 1), when they are zero. 

Substituting (50) into (8) and (9), it follows that the contribution of R~ 
and R.' to Z and M is negligible in the limit of n large. Hence they can be 
ignored in the thermodynamic limit, leaving Aa and Ba as simple direct 
products of diagonal 2 by 2 matrices. 

Applying the orthogonal transformation P leaves the center-spin 
operator S, given in this representation by (19c), unchanged. Substituting the 
expressions (50) and (19c) into (8) and (9), neglecting R. and R~', and using 
only the conditions (53) and (54), we obtain in the limit of n large 

the K in (8c) = the K in (50) (55) 

M = 1 ~  [1 - (ww')~J-2]/[1 + (ww') ~J-2] (56) 
J = l  

Now using (51) and (52), we can verify that these expressions are indeed 
correct to the appropriate orders in the t expansion (t 2 and t 8, respectively). 
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Further, and most suggestively, the expression (56) is precisely of the form 
conjectured by Barber and Baxter ~2~ (on the basis of longer series expansions 
and the known Ising result), namely 

1 - x 41-2 
M : = 1 1 + x ~ s -  2 ( 5 7 )  

where x is the variable occurring in the elliptic function parametrization of  
the weights of the eight-vertex model (Section 6). 

5.2.  In A as a H e i s e n b e r g - T y p e  O p e r a t o r  

We remarked above that In A (to second order in the expansions) was 
much simpler than might have been expected. This is more clearly seen in 
the arrow representation of Section 4, rather than the third representation 
used above. Using now the arrow representation, we find from (39), (42), 
(24)-(26), and (28) that to second order in the (b, c) expansion 

l n A  = + �89 Nj(s s +  + / , )  - R :  (58) 
j = l  

where 

J l  = ~ - 3 - (.r - � 89  2 - (-r + �89  2 

J2  = 2(c~ - 3) (ab  + c d ) / ( a  2 - d 2) (59) 

J a  = 2(a - 3) (ab  - c d ) / ( a  2 - d 2) 

,,r = ~ + 3 + (3z - �89  2 + (.r - � 89  2 (60) 

q~. = nc~ (61) 

R~ = (c~ - 3)nm,~ + (c2/a2)~'(n - 1)n(m,_l + m,~ - m , ~ _ l m , O  

+ ( b 2 / d 2 ) r ( n  - 1)nm,~_im,~ (62) 

In particular, 

lim n-2~b, = 0 
~ ~ (63) 

and to the obtained second order in the (b, c) expansion of J l ,  J2 ,  J3 ,  it is 
true that 

j l : j e ' 2 : ~  = �89 2 + b ~ - c 2 - d 2 ) : ( a b  + c d ) : ( a b  - c d )  (64) 

The "remainder opera tor"  R~ is diagonal, acts only on spins n - 1 and 
n, and has positive elements proportional to n 2 for n large, except for the 
element corresponding to both spins n - 1 and n being up, which element is 
zero. Thus R~ is negligible in the same sense as R~ and R, '  are in (50): Its 
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contribution to the traces in (8) and (9) is negligible in the thermodynamic 
limit. Also, the scalar additive ~, makes no contribution to the free energy or 
magnetization in this limit, since it satisfies (63). 

Hence ~, and R" can be ignored when n is large, and we see from (58) 
that In A is an operator of Heisenberg type (9~ (remember that sj, cj, and dj 
are the Pauli operators acting on spin j) ,  but with coefficients proportional to 
j .  It is known that the row-to-row transfer matrix of the eight-vertex model is 
intimately connected with a Heisenberg chain operator (~~ whose coefficients 
satisfy (64), so (58) is suggestive of a similar connection for the corner transfer 
matrix. 

6. ELLIPTIC F U N C T I O N  P A R A M E T R I Z A T I O N  

From the derivation of the free energy of the eight-vertex modeF 1) it is 
known that the system is in an ordered ferromagnetic state if 

a > b + c + d (65) 

It undergoes a phase transition when a = b + c + d. (This is also suggested 
simply by the previously obtained symmetry relations. (~1~) The "low- 
temperature" expansions discussed above lie in the regime (65), provided 
a > d .  

It is also known that an elliptic function parametrization of a, b, c, and d 
occurs naturally in the derivation of the free energy. In the regime (65) this 
parametrization is to define k, '0, and v such that 

a: b: e: d = sn 2"0 : [ -  k sn 2'0 sn('0 - v) sn('0 + v)]: sn('0 + v): sn('0 - v) (66) 

where sn u - sn(u, k) is the elliptic sn function (12~ of argument u and modulus 

k. 
In the regime (65), k is real, '0 and v are pure imaginary, and 

0 <  k < 1, IImv I < Ira'0 < �8 9  (67) 

where K and K'  are the complete elliptic integrals of the first kind, of moduli 
k and k' = (1 - k2) 112, respectively. 

The function sn u can be written as an infinite product of elementary 
functions. Let q be the nome of the elliptic functions, given by 

q = exp(-~rK'/K) (68) 

Then, from {}8, 146.23 of Ref. 12 (with ~/q corrected to q~/~), sn u is given by 

1ru ]-~ (1 - q21et~m)(1 - q2Je-~'m) 
k 1/2 sn u = 2q ~'4 sin ~-~=~ (1 - " ~ 2 ~  q2f-le-,~,~m ) (69) 
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From (66) and (69), the ratios a:  b: c: d can be written as infinite products  
o f  polynomial  functions o f  q and 

x = e ~ m ,  z = e i~vm (70) 

Since -q and v are pure imaginary, x and z are real and positive, and 

x < z < x - l ,  0 < q  < x  2 < 1 (70a) 

By using various elliptic function identities, one can establish that  

(a 2 q- b 2 - c 2 - d 2 ) / c d  = 2 cn 2~ dn 2~, a b / c d  = - k  sn2(2~)) (71) 

Note  that  these quantities, and therefore the ratios in (64), depend on k and 7/, 
but  are independent o f  v. 

We can write the results o f  our  expansions in terms of  q, x, and z, instead 
o f  a, b, c, and d. In  the (b, c) expansion we took  

a ,-~ d >> b ~ c (72) 

f rom which it follows that  

x << 1, q ,,~ x ~, z ~ x - 1 ,  b / a  ~ c /a  ..~ x (73) 

Alternatively, when t in (44) is small, we find that  

x << 1, q .-~ x 4, z ~ 1, t ~ x 1/2 (74) 

In either case, substituting the expression (69) into (66), using (70), and 
neglecting terms of  relative order smaller than x 2, we obtain 

b /a  = x - l q l / 2 ( 1  - xz)(1 - x z - 1 ) / [ ( 1  - q z x - 1 ) ( 1  - q z - l x - 1 ) ]  

e /a  = (x / z ) l l2 (1  - xz)(1 - x - 2 q ) / [ ( 1  - x2)(1 - q z - l x - 1 ) ]  (75) 

d / a  = (xz)l/2(1 - xz-1)(1 - x - 2 q ) / [ ( l  - x2)(1 - q z x - 1 ) ]  

Substituting these expressions into (59) and (60), to second order in the 
(b, c) expansion we find 

J l  = - -~-[ ln(xz)][1  + 2x 2 + 2 q x  -2  + O(xa)] (76) 

J 4  = - j ~  + 2[c~ + x2(1 - xz ) ]  + 2 x  2 ln(xz) + O(x a) (77) 

while on substituting them into (52), to  second order in the t expansion we 
obtain 

w = (xz)~/S[l + 0 . x  -t- O(x2)] 
(78) 

w'  = (x/z) lJ2[1 + O . x  + O(x2)] 

In particular, note f rom (78) that, to the order obtained, w w ' =  x .  

Hence the two expressions (56) and (57) for  the magnetizat ion certainly agree 
to this order. 
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7. CONJECTURES 

We have considered the "low-temperature" expansions of the matrices 
in some detail, because these calculations can be performed explicitly for 
finite n. They indicate that In A and In Aa may have quite simple forms, 
except for: 

(a) An additive scalar ~b, that satisfies (63), and hence gives zero con- 
tribution to the free energy [Eq. (8)] in the limit of n large, and 
cancels out of Eq. (9). 

(b) A remainder operator - R , ,  which gives zero contribution to 
either (8) and (9) in the limit of n large. To some order r in perturba- 
tion theory, this may be expected to act only on spins n - r + 1, 
n - r + 2,..., n. 

We now make the following conjectures, all of which apply only in the 
ferromagnetic regime (65), and are consistent with the above expansions. 

(i) The orthogonal matrices that diagonalize the two CTM's A and B 
are the same, apart from a factor of type exp( - R,): i.e., a factor that can be 
ignored (in some appropriate sense) in the limit of n large. The consequence 
of this is that A and B can be diagonalized simultaneously, together with S. 
The products and traces in (8) and (9) then become simple to evaluate. 

(ii) In the arrow representation, the operator In A is of the form (58), 
where q~ and R, '  are negligible in the sense described above [in particular, q~, 
satisfies (63)], and 

J l  = � 89  2 + b 2 - e 2 - d 2 ) / ( a b e d )  112 

J 2  = ~(ab + c d ) / ( a b e d )  112 (79) 

o f  3 = ~(ab - e d ) / ( a b e d )  lj~ 

where ~: is real and positive, and is defined in terms of the elliptic parametriza- 
tion of Section 6 by 

= - i k l /~ (  v + ~7) = r r -~k l / �89  K ln[(xz)-l] 

oo ( 1 - q 2 S  ~ 2 
= qll~ ln[(xz)-X] I--I \1 -~-T--1] (80) 

j = l  

C o r o l l a r i e s :  Since B is obtained from A by interchanging the Boltzmann 
weights e and d, a similar conjecture applies for In B, but with v negated, and 
z inverted, in (80). 

Apart from the negligible R~ contribution, In A is of the form 

In A = scalar - ~ (81) 

where the operator ~ depends on a, b,  c,  and d only via the ratios (71). The 
eigenvector matrix P therefore depends only on these ratios. In particular, it is 
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unaltered by interchanging e and d, so is the same for both A and B. Thus 
conjecture (i) follows from (ii). 

(iii) Let ~ ln  be the anisotropic Heisenberg chain operator with constant 
coefficients: 

~'~l, = - � 8 9  ~ (J ls j s j+z  + J2cjc j+l  + j3djdj+z)  (82) 
j = l  

where J l ,  J2 ,  and J a  are given by (79). Let A~ln be its minimum eigenvalue, 
and let 

F = lira Amin/2n (83) 
n ~ c o  

Then we conjecture that the fourth coefficient in (58) is 

= 2 In K + 4F (84) 

where K is given by (8c). 
The quantities K and F are known from the original results for the eight- 

vertex model. (z'1~ In the regime (65) which we are considering, where 

> J2  > IJ3l (85) 

they are given by 

In s = ~ x- t (x2J - q92(xJ + x - j  - zJ - z-J)  (86) 
j = l  

F =  - N -  t k -  f [ - ~ l n  v=-n (87) 

~ x - 2 J ( x  zj - qJ)�89 - x 2j) 1 1 In(xz) (88) 
= + 2 0 - u J = l  

the differentiation in (87) being performed for fixed k, V, q, and x. 
(iv) We conjecture that (in the third representation of Section 4) the 

CTM's A and B have the simple diagonal form given in (50), i.e., a direct 
product of two by two matrices, together with factors p, and e x p ( -  R,) which 
are negligible in the thermodynamic limit, that (53) and (54) are satisfied, and 
that 

w = (xz) 112, w' = (x/z)  11~ (89) 

Corollaries: Substituting (50) into (8), we obtain Eq. (55). Thus K in (50) 
must be the partition function per site. 

Substituting (50) into (9), we obtain expression (57) for the spontaneous 
magnetization, previously conjectured by Barber and Baxter. ~2~ 
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Taking logarithms in (50a), applying the inverse orthogonal transformation 
p -  1 to obtain In A, and assuming [as is implied by conjecture (ii)] that P 
depends on q and x, but not z, we obtain (ignoring terms negligible for n 
large) 

In A = �89 + 1) In ~ + [ln(xz)]W (90) 

where the operator W is independent of z. Taking the limit z -~ x -1 (i.e., 
v --~ -V), b and c become small, and we can use our perturbation expansion 
result (58)-(60) to evaluate W. The result obtained is that given in conjectures 
(ii) and (iii). 

Thus conjecture (iv), together with the independence of P on z, implies 
the three previous conjectures. 

8. C O N C L U S I O N S  

If  the above conjectures are correct, then the corner transfer matrices 
may well provide a useful tool for handling exactly soluble models in the 
thermodynamic limit, since then they have an extremely simple diagonal 
form. 

To do this properly it would be necessary to set up appropriate Banach 
algebras to handle the resulting infinite-dimensional operators. Presumably 
these algebras would be related to the C* algebra/la~ Here we have avoided 
this problem. 

In all previous work q, x, and z have been rather buried in the mathe- 
matics, though it has been remarked that they are "na tu ra l "  parameters to 
use. (4~ However, now we can give x and z a direct physical definition, for 
from (50) and (89) 

x = AA,1Aml/Aa,oAB,0 (91) 

z = Aa,IAB,0/Aa,0AB,1 (92) 

where AA, 0 and AA, 1 (AB, 0 and AB,~) are the largest and next largest, respec- 
tively, eigenvalues of the corner transfer matrix A (B). 

All the conjectures of course agree with the second-order perturbation 
expansions obtained. This evidence may not seem very convincing to the 
reader, but if the calculations are worked through in detail the number of  
cancellations needed, and that occur, for this to happen becomes quite 
impressive. 

More significantly, we can in fact prove conjectures (i) and (ii) in general, 
and all four conjectures for the Ising model case, when ab = cd, subject to a 
nonrigorous treatment of the limit of n large. It is intended to publish these 
results shortly. 
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It  is interesting to note that  our  conjecture (iv) implies that  any operator  
o f  the form (58) has the diagonal form (in the ar row representation) 

n - - 1  

�89 ~ j (Asjs j+l  + tO (93) 
j = l  

where A a n d / z  are scalars and we have ignored negligible contributions o f  
type 4 , ,  Rn. Thus all such operators  are related to one another,  within 
additive and multiplicative scalars, by or thogonal  similarity transformations.  
These t ransformations must  form a group, and it may  be that  a way to prove 
conjecture (iv) would be to examine this group. 

One of  the delightful properties o f  the Ising model  is that  all the 2" by 2" 
matrices that  occur form a group, and that  the members o f  this group can be 
represented by 2n by 2n matrices? 14~ Unfortunately,  no such property is 
known for the general six- and eight-vertex models. A rather ambitious hope 
is that  by examining the C T M ' s  we may  stumble on such a group, that  the 
solution o f  the models may thereby be simplified, and even that it may  then 
be possible to solve new models, such as a staggered eight-vertex model. 

R E F E R E N C E S  

1. R. J. Baxter, Ann. Phys. 70:193 (1972). 
2. M. N. Barber and R. J. Baxter, J. Phys. C Solid State Phys. 6:2913 (1973). 
3. R. J. Baxter and F. Y. Wu, Aust. J. Phys. 27:357 (1974). 
4. R. Jo Baxter, M. F. Sykes, and M. G. Watts, J. Phys, A Math. Gen. 8:245 (1975). 
5. R. J. Baxter, Ann. Phys. 76:1 (1973). 
6. R. J. Baxter, J. Stat. Phys. 9:145 (1973). 
7. F. Y. Wu, Phys. Rev. B 4:2312 (1971). 
8. L. P. Kadanoff and R. J. Wegner, Phys. Rev. B 4:3989 (1971). 
9. C. N. and C. P. Yang, Phys. Rev. 150:321 (1966). 

10. R. J. Baxter, Ann. Phys. 70:323 (1972). 
11. C. Fan and F. Y. Wu, Phys. Rev. B 2:723 (1970). 
12. I. S. Gradshteyn and I. M. Ryzhik, Table of  Integrals, Series and Products (Academic 

Press, New York and London, 1965), w 
13. D. Ruelle, Statistical Mechanics: Rigorous Results (W. A. Benjamin, New York, 

1969). 
14. B. Kaufman, Phys. Rev. 76:1232 (1949). 


